III B.Tech - I Semester – Regular Examinations – JANUARY 2022

INDUSTRIAL ENGINEERING & MANAGEMENT (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place

PART – A

- 1. a) Define Industrial Engineering.
 - b) What are the qualities of effective leadership?
 - c) When would you perform 100% inspection instead of sampling?
 - d) Explain the symbols and their meanings used in outline process chart.
 - e) What is network crashing in project management?

PART – B

<u>UNIT – I</u>

- a) Due to COVID -19 many software companies adopted the 8 M concept 'work from home'. In this context explain Hertzberg's Two Factor Theory of Motivation.
 - b) Explain the functions of management, (i) directing and, 4 M (ii) staffing.

OR

- 3. a) What are the 5 levels of Maslow hierarchy of needs? Give 6 M examples for each.
 - b) Distinguish between Mc Gregor's Theory X and Theory Y. 6 M

<u>UNIT – II</u>

- 4. a) As an Industrial Engineer which plant layout would you 8 M suggest for "mobile phone manufacturing" company and why?
 - b) What are the advantages and disadvantages of 4 M decentralization?

OR

- 5. a) What are the various styles of leadership based on 6 M authority? Explain any one style of leadership with examples.
 - b) Distinguish between mass production and batch production 6 M systems.

UNIT-III

a) Surface defects have been counted on 10 rectangular steel 8 M

6. plates and the data are shown in the following table. Draw the suitable control chart for non-conformities using this data. Check if the process is under control statistically.

Sheet No.	1	2	3	4	5	6	7	8	9	10
No. of Defects	2	3	1	4	4	0	2	1	4	2

b) Write a note on ISO 9000 series of quality standards. 4 M

OR

7. a) The following table provides the measurements of the 12 M axles of bicycle wheels in mm. Twelve samples with each sample consisting of the measurements of four axles were taken. Draw \bar{x} and R charts and comment on the results.

Measurements of the Axles of Bicycle Wheels

S 1.	Sample values in mm								
No									
1	139	140	145	144					
2	140	142	142	139					
3	142	136	143	141					
4	136	137	142	142					
5	145	146	146	146					
6	146	148	149	144					
7	148	145	146	146					

8	145	146	147	144
9	140	139	141	138
10	140	140	139	139
11	141	137	142	139
12	139	140	144	138

$\underline{UNIT} - IV$

- 8. a) Explain the various allowances considered while 6 M estimating standard time of jobs of operators working in a manufacturing company.
 - b) With an example of your choice, explain the development 6 M of an two handed process chart.

OR

- 9. a) A sheet metal operation is time-studied during which an 6 M operator was pace-rated as 120%. The operator took, on an average, 8 minutes for producing the funnel. If a total of 10% allowances are allowed for this operation, then find the standard time for the operation and expected standard production rate of the funnels (in units per 8 hour day).
 - b) Define and draw symbols of any six 'Therbligs'. 6 M

$\underline{UNIT - V}$

10. a) A project is represented by the network shown below and 8 M has the following data:

Task	Α	B	С	D	E	F	G	Η	Ι
Optimistic time (days)	4	18	26	16	15	6	8	7	3
Pessimistic time (days)	10	22	40	20	25	12	12	9	5
Most likely time (days)	7	20	33	18	20	9	10	8	4

Determine (i) the critical path and, (ii) project completion time.

b) Distinguish between CPM and PERT.

OR

11. a) A small assembly plant assembles, personal computers 8 M through nine interlinked stages according to the following precedence process:

Stage (from - to)	1- 2	1- 3	1- 4	2- 4	2- 5	3- 6	4- 6	5- 7	6- 7	6- 8	7- 8	8- 9
Duration (hours)	4	12	10	8	6	8	10	10	0	8	10	6

Draw project network and determine (i) the critical path and, (ii) project completion time.

b) List the common errors observed in drawing network 4 M diagrams and give example for each.

4 M