III B.Tech - I Semester - Regular Examinations - JANUARY 2022

INDUSTRIAL ENGINEERING \& MANAGEMENT (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This question paper contains two Parts A and B.
2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
4. All parts of Question paper must be answered in one place

PART - A

1. a) Define Industrial Engineering.
b) What are the qualities of effective leadership?
c) When would you perform 100% inspection instead of sampling?
d) Explain the symbols and their meanings used in outline process chart.
e) What is network crashing in project management?

PART - B
 UNIT - I

2. a) Due to COVID - 19 many software companies adopted the 8 M concept 'work from home'. In this context explain Hertzberg's Two Factor Theory of Motivation.
b) Explain the functions of management, (i) directing and, 4 M (ii) staffing.

OR

3. a) What are the 5 levels of Maslow hierarchy of needs? Give 6 M examples for each.
b) Distinguish between Mc Gregor's Theory X and Theory Y. 6 M

UNIT - II

4. a) As an Industrial Engineer which plant layout would you suggest for "mobile phone manufacturing" company and why?
b) What are the advantages and disadvantages of decentralization?

OR

5. a) What are the various styles of leadership based on authority? Explain any one style of leadership with examples.
b) Distinguish between mass production and batch production systems.

UNIT-III

a) Surface defects have been counted on 10 rectangular steel 8 M
6. plates and the data are shown in the following table. Draw the suitable control chart for non-conformities using this data. Check if the process is under control statistically.

Sheet No.	1	2	3	4	5	6	7	8	9	10
No. of Defects	2	3	1	4	4	0	2	1	4	2

b) Write a note on ISO 9000 series of quality standards.
7. a) The following table provides the measurements of the axles of bicycle wheels in mm. Twelve samples with each sample consisting of the measurements of four axles were taken. Draw $\overline{\mathrm{x}}$ and R charts and comment on the results. Measurements of the Axles of Bicycle Wheels

Sl. No	Sample values in mm			
1	139	140	145	144
2	140	142	142	139
3	142	136	143	141
4	136	137	142	142
5	145	146	146	146
6	146	148	149	144
7	148	145	146	146

8	145	146	147	144
9	140	139	141	138
10	140	140	139	139
11	141	137	142	139
12	139	140	144	138

UNIT - IV

8. a) Explain the various allowances considered while 6 M estimating standard time of jobs of operators working in a manufacturing company.
b) With an example of your choice, explain the development 6 M of an two handed process chart.

OR

9. a) A sheet metal operation is time-studied during which an 6 M operator was pace-rated as 120%. The operator took, on an average, 8 minutes for producing the funnel. If a total of 10% allowances are allowed for this operation, then find the standard time for the operation and expected standard production rate of the funnels (in units per 8 hour day).
b) Define and draw symbols of any six 'Therbligs'.

UNIT - V

10. a) A project is represented by the network shown below and 8 M has the following data:

Task	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}
Optimistic time (days)	4	18	26	16	15	6	8	7	3
Pessimistic time (days)	10	22	40	20	25	12	12	9	5
Most likely time (days)	7	20	33	18	20	9	10	8	4

Determine (i) the critical path and, (ii) project completion time.
b) Distinguish between CPM and PERT.
11. a) A small assembly plant assembles, personal computers through nine interlinked stages according to the following precedence process:

Stage (from - to)	$1-$ 2	$1-$ 3	$1-$	$2-$	$2-$	$2-$	$3-$	$4-$	$5-$	$6-$	$6-$	$7-$
6	8	$8-$										
7	8	8	8									
Duration (hours)	4	12	10	8	6	8	10	10	0	8	10	6

Draw project network and determine (i) the critical path and, (ii) project completion time.
b) List the common errors observed in drawing network diagrams and give example for each.

